
This is a basic how-to on setting up an Internet-connected BBS using GBBS Pro
and either a real or emulated Apple IIe or IIgs computer. For AppleWin users, the
minimum required version is 1.26.3.0 – this version has an ACIA behavior fix that’s
needed for GBBS Pro (or any other BBS package) to operate properly. You can find the
latest version of AppleWin here: https://github.com/AppleWin/AppleWin

In order to connect your real or virtual Apple IIe to the Internet, you’re going to
need to set up a “modem emulator”. There’s a number of different choices out there, but
for this how-to I’m going to cover one called tcpser. What tcpser does is act as a bridge
between the Internet and your Apple IIe (or other vintage computer). As far as your
Apple IIe is concerned, it’s talking to a real modem.

Setting up a host for tcpser is pretty simple. I’m going to cover two methods that
I’ve used myself. Note that tcpser can be built for Linux, Windows, and pretty much any
BSD-derived operating system (OpenBSD, FreeBSD, NetBSD, Darwing, etc.)

First will be a Raspberry Pi configuration and the second will be a Windows
configuration.

For the Raspberry Pi option, you’ll need the following items:
• Raspberry Pi 3
• USB to Serial adapter – units that use the Prolific PL-2303 chipset are

preferred and are known to work well. You can search Amazon for
“Prolific PL2303” to see some good examples from the likes of
Sabrent and Trendnet.

• A powered USB 2.0 hub. The Raspberry Pi cannot provide the power
that the USB to Serial adapter needs, so you’ll have to plug it into
the hub. The advantage here is that you can also power the
Raspberry Pi from the HUB as well.

• A special cable called a “Null Modem”. This is a special serial cable
that is used to connect your Apple IIe to the USB to Serial adapter. I’ll
cover this in detail later.

• The tcpser software.

If you’re using a Windows PC as the host, you can skip the Pi and the USB hub
(unless of course you’re out of USB ports on your PC!)

The Null Modem Cable

In order to connect your Apple IIe to the host running tcpser, you’re going to need
a null modem cable. This is a special cable that is designed to allow two computers to
communicate over a serial link. This special cable is needed because the connection on
both the host serial end and Apple IIe end is known as “DTE” or Data Terminal
Equipment. When you’re trying to get a serial link going DTE to DTE, you’ve got to
swap some wires around in the cable. This is not the case when going from a DTE
device, to a DCE (Data Communication Equipment) device like a modem.

The serial connector on the Apple
end is typically a 25 pin connector and
the connector on the PC or Pi end is often
a 9 pin connector. The diagram on the
right shows how the wires are connected
between the two to make a null modem
cable. You can use the chart on the right
to build your own cable if you like.

Cables of this type are easily found at online retailers such as Amazon (StarTech
SCNM925FM). Make sure that the cable you’re buying is a “full” null modem cable
with a pinout that matches the chart on the previous page, otherwise you could have
issues with it working properly.

Configuring the Super Serial Card
On the Apple II side, you should set up the Super Serial Card like so:

Set the jumper block with the triangle on it so that the tip of the triangle
points towards "MODEM".

SW1 is the first switch block, SW2 is the second.

Set SW1-5 and SW1-6 t on for "communications mode".
Set SW1, switches 1-4 to: off on off on - this sets 2400 baud.
Set SW2-1 to on for 1 stop bit
Set SW2-2 to on for 8 bits
Set SW2-4 to on for no parity.
Set SW2-6 to on to enable interrupts (set to off if you're using a II or II+)

Configuring AppleWin
In order to use tcpser with AppleWin, you’ll need to update the AppleWin

configuration with the ID of the serial port you’re going to be using.

You’ll also need to start
AppleWin with the “-modem”
command line switch in order to
enable proper behavior of the ACIA
on the emulated Super Serial Card
within AppleWin.

DE9 to DB25 Null Modem Cable
DE9 Pin # Name Name DB25 Pin #

8 CTS RTS 4
7 RTS CTS 5
3 TXD RXD 3
2 RXD TXD 2
4 DTR DCD 8
1 DCD DTR 20
5 GND GND 7

Getting and Installing tcpser for Windows
For those that plan on using Windows as their tcpser host, I’ve created a pre-

compiled binary that you can download here:

http://www.geneb.org/tcpser/tcpser_bin.zip

The zip file contains the tcpser.exe program as well as a pair of DLLs that are
required for it to function. Make sure that you keep the two included DLLs in the same
directory that tcpser.exe is in, otherwise the program may fail to work.

If you’re going the Linux or Raspberry Pi route, read on!

Getting and Installing tcpser for the Raspberry Pi
In order to get tcpser installed on your Raspberry Pi, you’re going to have to grab

the source code out of the Git repository where it lives. If you don’t have Git or the C
compiler installed on your Raspberry Pi, you’ll need to get those installed first – Google
is your friend here since that’s way outside the scope of this document.

Obtaining the source code for tcpser is very simple – you simply “clone” into the
Git repository where it’s stored. The Git repository you’re going to clone into is here:

 https://github.com/FozzTexx/tcpser

The command to obtain the software is:

git clone http://github.com/FozzTexx/tcpser

Once the clone is finished, you can change to the tcpser directory and type
“make” to compile the program. When the compile finishes, you’re ready to go!

Running tcpser for your BBS
You’ll need to identify what serial device you want tcpser to talk to while it’s

running. On a Raspberry Pi with a single USB serial adapter, it will be called
“/dev/ttyUSB0”. On a Windows system with a serial port at COM1, it will be called
“/dev/ttyS0”. Serial ports referenced by tcpser are counted at from zero on Windows,
so /dev/ttyS1 corresponds to COM2, /dev/ttyS2 corresponds to COM3, etc.

Obtaining tcpser via git.

http://www.geneb.org/tcpser/tcpser_bin.zip
https://github.com/FozzTexx/tcpser

Decide what telnet port you want tcpser to watch for connections. 23 is the
standard telnet port, but I recommend using something like 2300 or 6502. The reason
for this is that if your BBS is on a non-standard port, it will prevent (most) people
running port scanners and disturbing your BBS.

Chose a baud rate for your BBS that’s the fastest that your BBS software can
reliably support. In the case of GBBS Pro v1.3 and earlier, the driver appears to only
support up to 2400 baud. This is unsurprising considering what modem the average
user had available to them in 1986. GBBS Pro 2.2n (and possibly others after 1.3j)
support baud rates up to 38,400. Because tcpser runs at a fixed baud rate, you’ll need
to configure the BBS to run at the rate you’ve chosen for tcpser. If you notice characters
are being dropped at 38,400, slow it down and test again.

Available baud rates for tcpser are 300, 1200, 2400, 4800, 9600, 19200, 38400,
57600, and 115200.

Create a short text file that will be sent to a caller when they try to connect and
someone is already on the BBS. This is known as the “busy” file and should let the user
know that the system is busy and that they should try connecting again at a later time.

Once you've gotten tcpser built or downloaded, you can run it with the following
options:

tcpser -d /dev/ttyUSB0 -s 2400 -p 2300 -B busy-msg.txt -i "X3S0=1&C1&D2S2=128"

-d /dev/ttyUSB0 tells tcpser what device it's going to use.
-s 2400 tells tcpser to set the port baud rate to 2400.
-p 2300 tells tcpser to listen on port 2300 for incoming connections.
-B busy-msg.txt tells tcpser what the name of the “busy file” is.
-i "X3S0=1&C1&D2S2=128" configures the virtual modem inside of tcpser:

X3 - enables busy signal detection
S0=1 - Set to auto answer
&C1 - Enable DCD after carrier detected
&D2 - Dropping DTR causes connection to be closed.
S2=128 - Sets the modem "escape" character to ASCII 128.

On the GBBS side, you'll configure the system for a Hayes 2400 baud modem.
Note that if your version of GBBS can support baud rates higher than 2400, there’s no
reason you can’t use those higher rates with tcpser. Just specify that faster rate the
same way you did with 2400 baud.

The simplest way to run tcpser is via a script (Linux/Unix) or batch file (Windows).

For Linux:
/path/to/tcpser -d /dev/ttyUSB0 -s 2400 -p 2300 -B busy-msg.txt

-i “X3S0=1&C1&D2S2=128”

For Windows:
X:\path\to\tcpser -d /dev/ttyS0 -s 2400 -p 2300 -B busy-msg.txt

-i “X3S0=1&C1&D2S2=128”

Save the relevant command line to a file – there’s your script or batch file! Keep
in mind that under Linux, you’ll need to start the script with “sudo” in order for tcpser
to have permission to access the serial device on your system. ex.:

“sudo runbbs.sh”

Note that you’ll need to mark the script as executable by issuing “chmod +x
script-name.sh”. This is not neccessary in Windows.

